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Information Retrieval

* Information Retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from

within large collections (usually stored on computers).

o These days we frequently think first of web search, but there are many other cases:
* E-mail search
* Searching your laptop
* Corporate knowledge bases

* Legal information retrieval



Unstructured (text) vs. structured (database) data in 1996
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Unstructured (text) vs. structured (database) data today
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Basic assumptions of Information Retrieval

* Collection: A set of documents

o Assume it is a static collection for the moment

* Goal: Retrieve documents with information that is relevant to the user’s

information need and helps the user complete a task



The classic search model
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How good are the retrieved docs?

= Precision : Fraction of retrieved docs that are relevant to the user’ s
information need

= Recall : Fraction of relevant docs in collection that are retrieved

= More precise definitions and measurements to follow later
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Unstructured data in 1620

* Which plays of Shakespeare contain the words Brutus AND Caesar but NOT Calpurnia?
* One could grep all of Shakespeare’s plays for Brutus and Caesar, then strip out lines
containing Calpurnia?
* Why is that not the answer?
o Slow (for large corpora)
o NOT Calpurnia is non-trivial

o Other operations (e.g., find the word Romans near countrymen) not feasible

o Ranked retrieval (best documents to return)

O Later lectures



DEAKIN

UNIVERSITY

Term-document incidence matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if play contains
Brutus AND Caesar BUT NOT word. 0 otherwise
Calpurnia ’

11
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Incidence vectors

* So, we have a o/1 vector for each term.
* To answer query: take the vectors for Brutus, Caesar and Calpurnia

(complemented) =» bitwise AND.

O 110100 AND Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1
O 110111 AND Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
O 101111 = Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
O 100100 mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0



Answers to query

* Antony and Cleopatra, Act lll, Scene i

Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept

When at Philippi he found Brutus slain.

* Hamlet, Act lll, Sceneii

Lord Polonius: | did enact Julius Caesar | was killed i’ the

Capitol; Brutus killed me.
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Bigger collections
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* Consider N =1 million documents, each with about 1000
words.

* Avg 6 bytes/word including spaces/punctuation

06GB of data in the documents.

* Say there are M = sooK distinct terms among these.
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Can’t build the matrix

* 500K x 1M matrix has half-a-trillion o’s and 1's.

* But it has no more than one billion1's. <=

Why?

O matrix is extremely sparse.

* What's a better representation?

o We only record the 1 positions.
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The Inverted Index
The key data structure
underlying modern IR
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Inverted index
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* For each term t, we must store a list of all documents that contain t.

o ldentify each doc by a docID (doc serial number)

 Can we use fixed-size arrays for this?

Brutus m——>[ 1 [ 2] 4]11] 31] 45173174
Caesar n—— > ] 21 4] 516 ] 16/ 57132
Calpurnia | "———>[2 131 ] 54[101

What happens if the word Caesar
17 is added to document 147

Deakin University CRICOS Provider Code: 00113B
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Inverted index

* We need variable-size postings lists

o Ondisk, a continuous run of postings is normal and best

o In memory, can use linked lists or variable length arrays S
osting

o Some tradeoffs in size/ease of insertion /

/

Brutus m——>[ 1 [ 2] 4]11] 31] 45173174
Caesar n—— > ] 2] 41 5[ 6 | 16/ 57/132

| Calpurnia | "——=>[2 [31 | 54[10]
N _

18 Sorted by docID (more later on why).

Deakin University CRICOS Provider Code: 00113B




Inverted index construction
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' |
= === —
DO(_:umentS to jEL_Hﬂ _:J Friends, Romans, countrymen.
be indexed e .
'
o
[ Tokenizer J
Token stream 1 Friends Romans Countrymen
Linguistic modules W
. friend roman countryman
Modified tokens 1 Y
[ Indexer Jfriend 1] —— 24—
. roman DDI: > |12
Inverted index 1
19 countryman | In——>| 13 — 16
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Initial stages of text processing

Tokenization

o Cut character sequence into word tokens

o Deal with “John's”, a state-of-the-art solution

Normalization

o Map text and query term to same form
o You want U.S.A. and USA to match

Stemming

o We may wish different forms of a root to match

O authorize, authorization

Stop words

o We may omit very common words (or not)

o the, 3, to, of

20
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Indexer steps: Token sequence

 Sequence of (Modified token, Document ID) pairs.

Doc 1 Doc 2 —

21
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Term
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enact
julius
caesar
|
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Il

the
capitol
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me

o)

let
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with
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brutus
hath
told
you
caesar
was
ambitious
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Indexer steps: Sort

Term doclID

Term docID

* Sort by terms D
be 2

ng\.act 1 brutus 1
Julus brutus 2
— And then docID caesar 1 capitol 1
' 1 caesar 1
was 1 caesar 2
killed 1 caesar 2
v 1 did 1
the 1 enact 1
capitol 1 hath 1
brutus 1 I 1
killed 1 | 1
me 1 * i 1
SO 2 it 2
let 2 julius 1
it 2 killed 1
be 2 killed 1
with 2 let 2
caesar 2 me 1
the 2 noble 2
noble 2 SO 2
brutus 2 the 1
hath 2 the 2
told 2 told 2
you 2 you 2
caesar 2 was 1
was 2 was 2
ambitious 2 with 2

22
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Indexer steps: Dictionary & Postings

term doc. freq. — postings lists
* Multiple term entries in a single document ~ ®m o mbitows [ 1]~ [2
e —
b 2 <
b?utus 1 brutus | 2 - [1]—=
are merged. brtue 2 apitol [1] = [T
caesar 1 caesar | 2 — [1]|—
caesar 2 did 11 — |1
. . . . . caesar 2 —
* Splitinto Dictionary and Postings i : eact [1] - [1
enact ! hath | 1 - |2
hath 1 —
. . . | 1 q i1 — 1]
* Doc. frequency information is added. | 1 3E N
i 2 it |1 - [2
Jkullllu; 1 julius — |1
ne " P
killed 1 killed = 1]
let f let | 1 — (2
me M |
noble 2 me | 1 - ;
SO 2 noble | 1 | = [2]
e : so] 1 - 2
told 2 the | 2 — [1]—
2 —
was i told [ 1| - 2
was 2 you — i
2 with 2 was - [1]—
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Where do we pay in storage?

term doc. freq. ostings lists

©

ambitious] 1 | —
be | 1 — |2 .
brutus | 2 — j - < :: Lists of
capitol | 1 | — I doclIDs
caesar | 2 — I —
did [ 1 - 1]
Terms enact | 1 | — I
q hath | 1 — |2]
an 1 . I
counts ST - [ IR system
it | 1 - |2
julius - [ implementation
killed - 1
ot | 1 - 2 * How do we
me | 1 — |1 . - -
bl T 1] -2 index efficiently?
e M 13 « How much
told [1 | - [2 storage do we
you | 1 - |2]
s - - need?
with | 1 | — |2
[

24
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The index we just built

How do we process a query?

Later - what kinds of queries can we process?

/
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Query processing: AND

* Consider processing the query:

Brutus AND Caesar

o Locate Brutus in the Dictionary;
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o . Brutus
O Retrieve its postings.

A 4

A 4

A 4
—
o

A 4

32

A 4

64

\4

128

Caesar

o Locate Caesar in the Dictionary;

\ 4

A 4

@)

(0]

A 4

13

A 4

21

34

\4

O Retrieve its postings.

o “Merge"” the two postings (intersect the doc sets):

Deakin University CRICOS Provider Code: 00113B
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The merge

* Walk through the two postings simultaneously, in time linear in the total number of

postings entries

» 3 Wy ¥ N Answer
Brutus (2—4—8—~ 1632 —64 —~ 128

Caesar |12 {3+ 5+8+13—21-34
TN N
If the list lengths are x and y, the merge takes O(x+y)

operations.
Crucial: postings sorted by doclID.

End |28
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Intersecting two postings lists (a “merge” algorithm)
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INTERSECT(p1, p2)
answer < ()
while p; # NIL and p, # NIL
do if doc/D(p1) = doclD(p>)
then ADD(answer, doclD(py))

p1 < next(pi)

po> < next(p>)
else if doclD(p1) < doclD(p»)

then p; < next(p;)
else p> «— next(py)
10 return answer

O© 0O NO OB W N+
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Structured vs. Unstructured Data
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IR vs. databases: Structured vs unstructured data A
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* Structured data tends to refer to information in “tables”

Employee Manager Salary
Smith Jones 50000
Chang Smith 60000
lvy Smith 50000

Typically allows numerical range and exact match

(for text) queries, e.qg.,
Salary < 60000 AND Manager = Smith.
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Unstructured data

* Typically refers to free text

* Allows

o Keyword queries including operators
o More sophisticated “"concept” queries e.g.,

o find all web pages dealing with drug abuse

* Classic model for searching text documents
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Semi-structured data: Fielded Indices

* In fact almost no data is “unstructured”

* E.g., this slide has distinctly identified zones such as the Title and Bullets

O ... to say nothing of linguistic structure

* Facilitates “semi-structured” search such as

o Title contains data AND Bullets contain search

e Oreven

o Title is about Object Oriented Programming AND Author something like stro*rup

o where * is the wild-card operator

Deakin University CRICOS Provider Code: 00113B
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IR Models
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* Modeling in IR is a complex process aimed at producing a ranking function
o Ranking function: a function that assigns scores to documents with regard to a given
query
* This process consists of two main tasks:

o The conception of a logical framework for representing documents and queries
o The definition of a ranking function that allows quantifying the similarities among

documents and queries

Deakin University CRICOS Provider Code: 00113B
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Modeling and Ranking

* IR systems usually adopt index terms to index and retrieve documents

* Index term:
* In arestricted sense: it is a keyword that has some meaning on its own; usually plays

the role of a noun

* Inamore general form: it is any word that appears in a document
* Retrieval based on index terms can be implemented efficiently
* Also, index terms are simple to refer to in a query

 Simplicity is important because it reduces the effort of query formulation

Deakin University CRICOS Provider Code: 00113B



Ranking
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* Aranking is an ordering of the documents that (hopefully) reflects their
relevance to a user query

* Thus, any IR system has to deal with the problem of predicting which
documents the users will find relevant

* This problem naturally embodies a degree of uncertainty, or vagueness

Deakin University CRICOS Provider Code: 00113B



IR Models
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* AnIR modelis a quadruple [D, Q, F,R(q;,d; )] where:

1. Disasetof logical views for the documents in the collection
Z. Qisasetoflogical views for the user queries

3. Fis aframework for modeling documents and queries

4. R(q;,d; ) is aranking function D

R(qi' dj )

L
. ' > .
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A Taxonomy of IR Models

39
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Document Property |

Set Theoretic
Fuzzy
Extended Boolean
Classic IR Models Set-based
(Unstructured Text)
.// Algebraic
-— Generalized Vector
Probabilistic - Latent Semantic Indexing
‘ Neural Networks
Probabilistic
BM25
Language Models
» Semi-Structured Text Divergence from Randomness
Proximal Nodes, others Bayesian Networls
XML-based
Web
Page Rank
Hubs & Authorities
Multimedia Retrieval
Image Retrieval
Audio and Music Retrieval
Video Retrieval
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Modeling in Information Retrieval

* In this lecture, we will discuss the following models:

o The Boolean Model

o The Vector Model
o Probabilistic Model
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Boolean queries: Exact match

* The Boolean retrieval model is being able to ask a query that is a Boolean

expression:

— Boolean Queries are queries using AND, OR and NOT to join query terms

* Views each document as a set of words

* |s precise: document matches condition or not.

— Perhaps the simplest model to build an IR system on

* Primary commercial retrieval tool for 3 decades.

* Many search systems you still use are Boolean:

— Email, library catalog, Mac OS X Spotlight

42
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Example: WestLaw
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» Largest commercial (paying subscribers) legal search service (started
1975; ranking added 1992; new federated search added 2010)

 Tens of terabytes of data; ~700,000 users

» Majority of users still use boolean queries

« Example query:
— What is the statute of limitations in cases involving the federal tort claims act?
— LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM

e /3 = within 3 words, /S =in same sentence

Deakin University CRICOS Provider Code: 00113B
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Example: WestLaw

Another example query:
* Requirements for disabled people to be able to access a workplace
 disabl! /p access! /s work-site work-place (employment /3 place

Note that SPACE is disjunction, not conjunction!

Long, precise queries; proximity operators; incrementally developed; not like
web search

Many professional searchers still like Boolean search
* You know exactly what you are getting

But that doesn’t mean it actually works better....

Deakin University CRICOS Provider Code: 00113B
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Boolean queries: More general merges

* Exercise: Adapt the merge for the queries:

Brutus AND NOT Caesar
Brutus OR NOT Caesar

* Can we still run through the merge in time O(x+y)? What can we achieve?
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Merging

* What about an arbitrary Boolean formula?
(Brutus OR Caesar) AND NOT (Antony OR Cleopatra)

* Can we always merge in “linear” time?

o Linear in what?

* Can we do better?

Deakin University CRICOS Provider Code: 00113B



Query optimization

* What is the best order for query processing?

 Consider a query thatis an AND of n terms.

* For each of the nterms, get its postings, then AND them together.

Deakin University CRICOS Provider Code: 00113B

Brutus

Caesar

Calpurnia

11| —=
11| —=
11| —=

2

4

8

16

32

64

128

1

5

8

16

21

34

13

16

Query: Brutus AND Calpurnia AND Caesar
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Query optimization example

* Process in order of increasing freq:

o start with smallest set, then keep cutting further.

Execute the query as (Calpurnia AND Brutus) AND Caesar.

Deakin University CRICOS Provider Code: 00113B

%

This is why we kept

document freq. in dictionary

Brutus m——>| 2 | 4 16| 32| 64/128
Caesar m—— > | 51 8 | 16| 211 34
Calpurnia |imi——>|13 |16
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More general optimization
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* e.g., (madding OR crowd) AND (ignoble OR strife)

* Estimate the size of each OR by the sum of its doc. freq.’s (conservative).

Get doc. freq.’s for all terms.

* Process in increasing order of OR sizes.

Deakin University CRICOS Provider Code: 00113B
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Exercise

* Recommend a query processing order for

Term Freq
(tangerine OR trees) AND eyes 213312
kaleidoscope 87009
( marmalade OR skies) AND marmalade 107913
skies 271658
(kaleidoscope OR eyes) tangerine 46653
trees 316812

* Which two terms should we process first?
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Phrase queries

* We want to be able to answer queries such as “stanford university” — as a
phrase

* Thus the sentence "/ went to university at Stanford” is not a match.
o The concept of phrase queries has proven easily understood by users; one of the few

“advanced search” ideas that works

o Many more queries are implicit phrase queries

* For this, it no longer suffices to store only

<term : docs> entries



DEAKIN

UNIVERSITY

Standard Solution: Positional indexes

* In the postings, store, for each term the position(s) in which tokens of it

appear:

<term, number of docs containing term;
doczi: positiona, position2 ... ;
doc2: positionz, position2 ... ;

etc.>



Positional index example
DEAKIN

UNIVERSITY

<be: 993427;

7-7.18.33.72. 86. 231" Which of docs 1,2,4,5
2: 3, 1 4,9, Y ’ could contain “zo be
7 ’ or not to be”?

4: 17,191, 291, 430, 434,
5:363, 367, ...>

* For phrase queries, we use a merge algorithm recursively at the document
level

* But we now need to deal with more than just equality

Deakin University CRICOS Provider Code: 00113B
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Processing a phrase query

* Extract inverted index entries for each distinct term: to, be, or, not
* Merge their doc:position lists to enumerate all positions with “to be or not to be”

»to:

O 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...
> be:

O 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

* Same general method for proximity searches

Deakin University CRICOS Provider Code: 00113B



Proximity queries
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 LIMIT! [3STATUTE /3 FEDERAL /2 TORT

o Again, here, [k means “within k words of”.

* Clearly, positional indexes can be used for such queries.
* Exercise: Adapt the linear merge of postings to handle proximity queries.

Can you make it work for any value of k?

o This is a little tricky to do correctly and efficiently

Deakin University CRICOS Provider Code: 00113B
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Positional index size

* A positional index expands postings storage substantially

o Even though indices can be compressed

* Nevertheless, a positional index is now standardly used because of the
power and usefulness of phrase and proximity queries ... whether used

explicitly or implicitly in a ranking retrieval system.
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Positional index size

* Need an entry for each occurrence, not just once per document

* Index size depends on average document size

o Average web page has <1000 terms

o SECfilings, books, even some epic poems ... easily 100,000 terms

 Consider a term with frequency 0.1%

Document size Postings Positional postings

1000 1 1
100,000 1 100




Rules of thumb

DEAKIN

UNIVERSITY

A positional index is 2—4 as large as a non-positional index

* Positional index size 35—50% of volume of original text

o Caveat: all of this holds for "English-like” languages
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Outline
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* Ranked retrieval
* Scoring documents
* Term frequency
* Collection statistics
* Weighting schemes

* Vector space scoring
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Ranked retrieval

* So far, our queries have all been Boolean
o Documents either match or don’t

* Good for expert users with precise understanding of their needs and the collection
o Also good for applications: Applications can easily consume 1000s of results

* Not good for the majority of users

o Most users incapable of writing Boolean queries (or they are, but they think it's too much work)

o Most users don’t want to wade through 1000s of results

o This is particularly true of web search

63
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Problem with Boolean search: feast or famine

* Boolean queries often result in either too few (=0) or too many (1000s)
results.

* Query 1: “standard user dlink 650" — 200,000 hits

* Query 2: “standard user dlink 650 no card found": o hits

* It takes a lot of skill to come up with a query that produces a manageable

number of hits.

o AND gives too few; OR gives too many

Deakin University CRICOS Provider Code: 00113B
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Ranked retrieval models

* Rather than a set of documents satisfying a query expression, in ranked
retrieval, the system returns an ordering over the (top) documents in the

collection for a query

* Free text queries: Rather than a query language of operators and

expressions, the user’s query is just one or more words in a human language

* In principle, there are two separate choices here, but in practice, ranked

retrieval has normally been associated with free text queries and vice versa
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Feast or famine: not a problem in ranked retrieval

* When a system produces a ranked result set, large result sets are not an

Issue

o Indeed, the size of the result set is not an issue
o We just show the top k ( = 10) results

o We don’t overwhelm the user

o Premise: the ranking algorithm works
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Scoring as the basis of ranked retrieval

* We wish to return in order the documents most likely to be useful to the
searcher

* How can we rank-order the documents in the collection with respect to a
query?

* Assign a score —say in [0, 1] —to each document

* This score measures how well document and query “"match”.



Query-document matching scores
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* We need a way of assigning a score to a query/document pair

* Let's start with a one-term query

* If the query term does not occur in the document: score should be o

* The more frequent the query term in the document, the higher the score

(should be)

* We will look at a number of alternatives for this

Deakin University CRICOS Provider Code: 00113B



Take 1: Jaccard coefficient
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* jaccard(A,B)=|ANB|/|AUB|
* jaccard(A,A) =1

* jaccard(A,B)=0ifANB=o0
A and B don’t have to be the same size

* Always assigns a number between o and 1
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Jaccard coefficient: Scoring example
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* What is the query-document match score that the Jaccard coefficient
computes for each of the two documents below?

* Query: ides of march

 Document 1: caesar died in march

* Document 2: the long march
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Issues with Jaccard for scoring

* It doesn’t consider term frequency (how many times a term occurs in a
document)

* Rare terms in a collection are more informative than frequent terms. Jaccard
doesn’t consider this information

* We need a more sophisticated way of normalizing for length

* Laterin this lecture, we'll use [A N BI/\/lA U B

* ...instead of |[A N B|/|A U B| (Jaccard) for length normalization.
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Recall: Binary term-document incidence matrix

Antony
Brutus
Caesar
Calpurnia
Cleopatra
mercy

worser

Antony and Cleopatra
1

I G . JE G N

Julius Caesar

O O O =) =) =

The Tempest
0

- =2 O O O O

Hamlet

0

1
1
0
0
1
1

Othello
0

Macbeth

o = O O = O

Each document is represented by a binary vector € {0,1}!V/

74
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Term-document count matrices

* Considerthe number of occurrences of a term in a document:

o Each document is alcount vector|in NV: a column below

Antony and Cleopatra | Julius Caesar | The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

75
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Bag of words model
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* Vector representation doesn’t consider the ordering of words in a document
 John is quicker than Mary and Mary is quicker than John have the same vectors

* This is called the bag of words model

* In a sense, this is a step back: The positional index was able to distinguish
these two documents
* The lIR book considers “recovering” positional information

* For now: bag of words model

Deakin University CRICOS Provider Code: 00113B



Term frequency tf
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The term frequency tf; 4 of term t in document d is defined as the number
of times that t occursind
We want to use tf when computing query-document match scores. But how?

Raw term frequency is not what we want:

o A document with 10 occurrences of the term is more relevant than a document with 1
occurrence of the term

o But not 10 times more relevant

Relevance does not increase proportionally with term frequency

NB: frequency = count in IR
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Log-frequency weighting

* The log frequency weight of term tind is

we, =11t logio(tfea), iftfeqa >0
L 0, otherwise

O 0—0,1—1,2—1.3,10 — 2, 1000 — 4, etc.

* Score for a document-query pair: sum over terms t in both g and d:

score(q,d) = 2 |1+ logio(tfia)l

tegnd
* The scoreis o if none of the query terms is present in the document

78
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Document frequency

 Rare terms are more informative than frequent terms

o Recall stop words

* Consider a term in the query thatis rare in the collection (e.g.,
arachnocentric)

* A document containing this term is very likely to be relevant to the query
arachnocentric

* — We want a high weight for rare terms like arachnocentric
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Document frequency

 Rare terms are more informative than frequent terms

o Recall stop words

* Consider a term in the query thatis rare in the collection (e.g.,
arachnocentric)

* A document containing this term is very likely to be relevant to the query
arachnocentric

* — We want a high weight for rare terms like arachnocentric
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Document frequency, continued

* Frequent terms are less informative than rare terms

* Consider a query term that is frequent in the collection (e.q., high, increase, line)

* A document containing such a term is more likely to be relevant than a document that
doesn't

* Butit's not a sure indicator of relevance-

» — For frequent terms, we want high positive weights for words like high, increase, and
line

* But lower weights than for rare terms

* We will use document frequency (df) to capture this
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idf weight
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* df; is the document frequency of t: the number of documents that contain t

o df; is an inverse measure of the informativeness of t

OdftSN

* We define the idf (inverse document frequency) of t by

o We use 10g19(V/4y,) instead of ¥/, - to “dampen” the effect of idf

Deakin University CRICOS Provider Code: 00113B

idfe = logyo (N/dft)

Will turn out the base of the log is immaterial.




idf example, suppose N = 1 million
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calpurnia 1
animal 100
sunday 1,000
fly 10,000
under 100,000
the 1,000,000

idf, = logo (V/y4y,)

There is one idf value for each term t in a collection
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Effect of idf on ranking

* Does idf have an effect on ranking for one-term queries, like

o iPhone

* idf has no effect on ranking one term queries
o idf affects the ranking of documents for queries with at least two terms
o For the query capricious person, idf weighting makes occurrences of capricious count

for much more in the final document ranking than occurrences of person.
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Collection vs. Document frequency

* The collection frequency of tis the number of occurrences of t in the collection,
counting multiple occurrences

* Example:
Collection frequency Document frequency

insurance 10,440 3,997

try 10,422 8,760

* Which word is a better search term (and should get a higher weight)?

86
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TF-IDF Properties

* Considerthe tf, idf, and tf — idf weights for the Wall Street Journal reference collection

* To study their behavior, we would like to plot them together

* While idf is computed over all the collection, tf is computed on a per document basis. Thus, we
need a representation of tf based on all the collection, which is provided by the term collection
frequency

* This reasoning leads to the following tf and idf term weights:

N

we =1+ logso Z tfij, idfe =logio (N/dft)

J=1

87
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TF-IDF Properties
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* Plotting tf and idf in logarithmic scale yields

* We observe that tf and idf weights present power-law behaviors that balance each

12
Other 51 * +4, + TF . e TFxIDF
X IDF o..
10 -
4 4
XU
8
3 -
6 -
2 -
4 4
1 L] 2 .....
x Xx
0 X 0
10° 10! 102 103 104 100 10! 102 103 104

* The terms of intermediate idf values display maximum tf — idfweights and are most

interesting for ranking

88
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tf-idf weighting

The tf — idf weight of a term is the product of its tf weight and its idf weight

tf —idfeq = (1 + loglo(tft,d)) Xlogio (N/dft)

Best known weighting scheme in information retrieval

o Note:the"-"intf — idf is a hyphen, not a minus sign!
o Alternative names: tf.idf, tf Xidf

* Increases with the number of occurrences within a document

* Increases with the rarity of the term in the collection
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Score for a document given a query

score(q,d) = 2 tf —idftq

tegnd

* There are many variants
o How “tf” is computed (with/without logs)
o Whether the terms in the query are also weighted

O ...
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Binary — count — weight matrix

Antony
Brutus
Caesar
Calpurnia
Cleopatra
mercy

worser

Antony and Cleopatra
5.25
1.21
8.59
0
2.85
1.51
1.37

Julius Caesar
3.18
6.1
2.54
1.54
0
0
0

The Tempest
0

o O O O

1.9
0.11

Hamlet

Othello
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Macbeth
0.35

0.88
1.95

Each document is now represented by a real-valued vector of tf-idf weights € RIVI

92
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Documents as vectors

* So we have a |V|-dimensional vector space

* Terms are axes of the space

* Documents are points or vectors in this space

* Very high-dimensional: tens of millions of dimensions when you apply this to
a web search engine

* These are very sparse vectors - most entries are zero
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Queries as vectors

» Key idea 1: Do the same for queries: represent them as vectors in the space

* Key idea 2: Rank documents according to their proximity to the query in this space

* proximity = similarity of vectors

* proximity = inverse of distance

* Recall: We do this because we want to get away from the you‘re-either-in-or-out
Boolean model.

* Instead: rank more relevant documents higher than less relevant documents

95

Deakin University CRICOS Provider Code: 00113B



DEAKIN

UNIVERSITY

Formalizing vector space proximity

* First cut: distance between two points

o (=distance between the end points of the two vectors)

* Euclidean distance?
* Euclidean distanceisabadidea. ..

* ... because Euclidean distance is large for vectors of different lengths
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Why distance is a bad idea
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* The Euclidean distance between g GOSSIP d>

and d, is large even though the

distribution of terms in the query g

and the distribution of terms in the

document d, are very similar.

JEALOUS
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Use angle instead of distance
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* Thought experiment: take a document d and append it to itself. Call this
document d'

* "Semantically” d and d" have the same content

* The Euclidean distance between the two documents can be quite large

* The angle between the two documents is o, corresponding to maximal
similarity

 Key idea: Rank documents according to angle with query
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From angles to cosines

* The following two notions are equivalent

o Rank documents in decreasing order

of the angle between query and

document

S0 o0 150 200 250 300 350

o Rank documents in increasing order

of cosine(query,document)

 Cosine is a monotonically decreasing

function for the interval [0°, 180°] But how — and why —

should we be computing
0o cosines?
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Length normalization

* Avector can be (length-) normalized by dividing each of its components by its length — for this we

use the L, norm:

I#ll, = | ) xF
l

\
 Dividing a vector by its L, norm makes it a unit (length) vector (on surface of unit hypersphere)

 Effect onthe two documents d and d' (d appended to itself) from earlier slide: they have identical

vectors after length-normalization.

o Longand short documents now have comparable weights

100
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cosine(query,document) A
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Dot product Unit vectors
AN p J p Yod
— o
cos(G,d)=1"2 =1L ¢ % = -

Z SIS

qg; is the tf-idf weight of term i in the query
d:is the tf-idf weight of term j in the document

#c?‘_

4]

cos(qg,d) is the cosine similarity of g and d ... or
equivalently, the cosine of the angle between g and d.
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Cosine for length-normalized vectors

* Forlength-normalized vectors, cosine similarity is simply the dot product (or

scalar product):

cos(q, c_i)) =G-d= 1ql~di

o for g, d length-normalized.



Cosine similarity illustrated
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Cosine similarity amongst 3 documents

* How similar are the novels:
o SaS: Sense and Sensibility

o PaP: Pride and Prejudice, and
o WH: Wuthering Heights?

A
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mmmm
affection

jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting
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3 documents example contd.
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Log frequency weighting After length normalization
affection 3.06 2.76 2.30 affection 0.789 0.832 0.524
jealous 2.00 1.85 2.04 jealous 0.515 0.555 0.465
gossip 1.30 0 1.78 gossip 0.335 0 0.405
wuthering 0 0 2.58 wuthering 0 0 0.588

cos(SaS,PaP) ~ 0.789 x 0.832 + 0.515 x 0.555 + 0.335 x 0.0+ 0.0 x 0.0
~ 0.94

cos(SaS,WH) = 0.79

cos(PaP,WH) = 0.69

105 Why do we have cos(SaS,PaP) > cos(SaS,WH)?
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Computing cosine scores for ranking A
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COSINESCORE(q)
1 float Scores|[N] =0

float Length[N]

for each query term t

do calculate wt 4 and fetch postings list for t
for each pair(d,tf; ) in postings list
do Scores|d]|+ = w¢ g X Wy g

Read the array Length

for each d

do Scores|d| = Scores|d]/Length|d]

return Top K components of Scores|]

O O© 0 NO 01 B WMo
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tf-idf weighting has many variants

Term frequency Document frequency Normalization
n (natural) tfed n (no) 1 n (none) 1
| (logarithm) 1 + log(tf: 4) t (idf) Iog% c (cosine) )
VWi wE . Wiy
O.Stht__d H N—dft -
a (augmented) 0.5+ o) | P (prob idf)  max{0,log =5~} | u (mﬁteed) 1/u
1 iftt;g >0 : a
b (boolean) {O otherwise b (byte size) 1/CharLength™,
a <1
1+log(tfe q)
L (|Og ave) 1+Iog(avetedt(zft‘d))

Columns headed ‘n’ are acronyms for weight schemes

Why is the base of the log in idf immaterial?

107
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Weighting may differ in queries vs documents

* Many search engines allow for different weightings for queries vs. documents
* SMART Notation: denotes the combination in use in an engine, with the notation

ddd.qqqg, using the acronyms from the previous table

« Avery standard weighting scheme is: Inc.ltc | APad idea?

* Document: logarithmic tf (I as first character), no idf and cosine normalization

* Query: logarithmic tf (I in leftmost column), idf (t in second column), no

normalization ...
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tf-idf example: Inc.ltc

Document: car insurance auto insurance
Query: best car insurance

tf- tf-wt df idf wt n’lize tf-raw tf-wt wt n’ lize
raw
auto 0 0 5000 2.3 0 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Exercise: what is N, the number of docs?

Doc length =124 0> + 1> +1.3> ~1.92
109 Score = 0+0+0.27+0.53 = 0.8
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Summary - vector space ranking
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* Represent the query as a weighted tf-idf vector

* Represent each document as a weighted tf-idf vector

» Compute the cosine similarity score for the query vector and each document
vector

* Rank documents with respect to the query by score

* Return the top K (e.g., K =10) to the user
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